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The language of modal logic is obtained from the language of propositional logic by adding a
modal operator ¤: formulas are build up from propositional symbols p ∈ Φ, using propositional
connectives ¬, ∧, and the unary operator ¤.

A Kripke frame is a structure R = 〈W,R〉 where W is a non-empty set and R ⊆ W 2. These
frames provide neat semantics for the so-called normal systems of modal logic. A Kripke model is
a structure M = 〈R, V 〉 where R is a Kripke frame and V is a function Φ → P(W ). The truth
conditions are defined recursively as in propositional logic, except for the modal operator ¤:

M, w |= ¤ϕ ⇔ ∀v ∈ W,wRv ⇒M, v |= ϕ

But Kripke models cannot account for non-normal modal logics (e.g. classical systems). The
Kripke semantics can be generalized by means of Scott-Montague frames, i.e. structures F =
〈W,F 〉 where F is a set function P(W ) → P(W ). The truth condition for the modal operator
¤ in a Scott-Montague model M = 〈F, V 〉 is given by: M, w |= ¤ϕ ⇔ w ∈ F (||ϕ||), where
||ϕ|| = {v ∈ W |M, v |= ϕ}. For further background see e.g. [?].

We say that a class K of Kripke frames corresponds to a class F of Scott-Montague frames, if
there are translations R 7→ FR and F 7→ RF such that

• if 〈W,R〉 ∈ K, then 〈W,FR〉 ∈ F , and if 〈W,F 〉 ∈ F , then 〈W,RF 〉 ∈ K,
• for all modal formulas ϕ, 〈W,R〉 |= ϕ ⇔ 〈W,FR〉 |= ϕ, and 〈W,F 〉 |= ϕ ⇔ 〈W,RF 〉 |= ϕ,
• RFR = R and FRF = F .

Let B = {0, 1}. Several important classes C ⊆ ⋃
n≥1 BB

n

of Boolean functions are known to be
definable by functional terms, i.e. formal expressions h(f(g1(v1, . . . ,vp)), . . . , f(gm(v1, . . . ,vp))),
where h : Bm → B, each gi is a map Bpn → Bn, the v1, . . . ,vp are vector variable symbols, and f is
a function symbol. In particular, Boolean clones, i.e. classes containing all projections and closed
under composition, are definable by functional terms (see [?]).

In this talk we show that several natural classes of Kripke frames correspond to classes Scott-
Montague frames which are “determined” by Boolean clones. By means of suitable translations
between functional terms and modal formulas of a prescribed syntax (uniform 1-degree), and using
the natural bijection between set functions F : P(W ) → P(W ) and Boolean operators f : Bn → Bn,
we establish a complete correspondence between classes definable by functional terms and classes
of Scott-Montague frames axiomatizable by uniform 1-degree formulas. This correspondence is
used to determine the desired translations R 7→ FR and F 7→ RF .

The results discussed in this presentation were obtained jointly with L. Hella and J. Kivelä at
University of Tampere.
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